r :
ball:
sphere:
radius of a ball or sphere;
collection of all points having a distance d to some reference point we call its centre, where $d \leq r$; it is massive, inside is part of it; collection of all points having a distance d to some reference point we call its centre, where $d=r$; it is hollow, inside is not part of it;
volume: size of what is enclosed by a sphere;
surface area: size of what encloses a ball;
a sphere is the outer surface of a ball, a ball is a sphere plus all it encloses;
circle:
disk:
equivalent of a sphere in 2D space; equivalent of a ball in 2D space, i.e. a circle plus all it encloses.

A ball is massive, a sphere is hollow.

Single Dutch:

In dit document is een "3-ball" een massieve bal en een "2-sphere" een holle bol, Gijs!

Ezelsbruggetje (donkey bridgie?):
de a van bal komt van massief of alles; de o van bol staat voor oppervlak; ook rijmt bol op hol en da's nie vol. Lol.

In daily life, a surface area is 2D and a volume is 3D . In multidimensional mathematics, that's anothercook different:

		cf. a desktop (no, not a computer screen, moron!)	cf. the space all around us	beyond our imagination
enclosed:	math. name:	2-ball	3-ball	4-ball
	conv. name:	disk	ball	hyperball
	math. size:	2-volume	3 -volume	4-volume
	conv. size:	$\begin{aligned} & \text { surface } \\ & \text { area } \end{aligned} \quad\left[\mathrm{m}^{2}\right]$	volume [$\left.\mathrm{m}^{3}\right]$	$\begin{aligned} & \begin{array}{l} \text { hyper- } \\ \text { volume } \end{array} \quad\left[\mathrm{m}^{4}\right] \end{aligned}$
		$V_{2}=\pi r^{2}$	$V_{3}=\frac{4 \pi}{3} r^{3}$	$V_{4}=\frac{\pi^{2}}{2} r^{4}$
enclosing:	math. name:	1-sphere	2-sphere	3-sphere
	conv. name:	circle	sphere	hypersphere
	math. size:	1-surface area	2-surface area	3-surface area
	conv. size:	circum- ference $\quad[\mathrm{m}]$	$\begin{array}{ll} \text { surface } \\ \text { area } \end{array} \quad\left[\mathrm{m}^{2}\right]$	volume [m^{3}]
	$A_{n}=\frac{d V_{n+1}}{d r}$	$A_{1}=2 \pi r$	$A_{2}=4 \pi r^{2}$	$A_{3}=2 \pi^{2} r^{3}$

conv. descr.	$V_{n}=\frac{r A_{n-1}}{n}=\frac{2 \pi r^{2} V_{n-2}}{n}$	$A_{n}=2 \pi r V_{n-1}=\frac{d V_{n+1}}{d r}$	conv. descr.
	$V_{0}:=1$	$A_{0}:=2$	
	$V_{1}=\frac{r A_{0}}{1}=2 r$	$A_{1}=2 \pi r V_{0}=2 \pi r$	circumf. of circle
area of circle	$V_{2}=\frac{r A_{1}}{2}=\pi r^{2}$	$A_{2}=2 \pi r V_{1}=4 \pi r^{2}$	area of sphere
volume of sphere	$V_{3}=\frac{r A_{2}}{3}=\frac{4 \pi}{3} r^{3}$	$A_{3}=2 \pi r V_{2}=2 \pi^{2} r^{3}$	
	$V_{4}=\frac{r A_{3}}{4}=\frac{\pi^{2}}{2} r^{4}$	$A_{4}=2 \pi r V_{3}=\frac{8 \pi^{2}}{3} r^{4}$	
	$V_{5}=\frac{r A_{4}}{5}=\frac{8 \pi^{2}}{15} r^{5}$	$A_{5}=2 \pi r V_{4}=\pi^{3} r^{5}$	
	$V_{6}=\frac{r A_{5}}{6}=\frac{\pi^{3}}{6} r^{6}$	etc.	

V_{n} is enclosed by $S_{n-1}, \quad S_{n}$ encloses V_{n+1}
(S_{n} denotes the (hollow) n-sphere as such, A_{n} is the value of its surface area).
On the internet they often use S_{n} or A_{n} to indicate the surface of an n-ball where they should actually have used S_{n-1} or A_{n-1}, which is rather cofunsign.
The earth is a 3-ball \& its surface is a 2-sphere with $\mathbf{2}$ dim., i.e. lat. \& lon.

\boldsymbol{n}-volume of \boldsymbol{n}-ball ${ }^{[6,7]}$ and \boldsymbol{n}-surface area of \boldsymbol{n}-sphere ${ }^{[6,7]}$ for $\boldsymbol{n} \leq \mathbf{2 0}$

$$
V_{n}=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} r^{n} \quad A_{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} \text {, i.e. } A_{n}=\frac{2 \pi^{(n+1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} r^{n}
$$

where $\Gamma(x)$ is the so called gamma function ${ }^{[3]}: \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$

$$
\Gamma(x+1)=x \Gamma(x) \quad \forall(n \in \mathbb{N}, n>0): \Gamma(n)=(n-1)!
$$

A0	=	2			$=2.00000$	
A1	=	2	* pi	* r	6.28319	* r
A2	=	4	* pi	$\mathrm{r}^{\wedge} 2$	= 12.5664	$\mathrm{r}^{\wedge} 2$
A3	=	2	* pi^2	* $\mathrm{r}^{\wedge} 3$	$=19.7392$	* $\mathrm{r}^{\wedge} 3$
A4		(8/3)	* pi^2	$\mathrm{r}^{\wedge} 4$	$=26.3189$	* $r^{\wedge} 4$
A5			$\mathrm{pi}^{\wedge} 3$	* $\mathrm{r}^{\wedge} 5$	$=31.0063$	* $\mathrm{r}^{\wedge} 5$
A6		(16/15)	* pi^3	$\mathrm{r}^{\wedge} 6$	$=33.0734$	* $r^{\wedge} 6$
A7	=	(1/3)	* pi^4	* $\mathrm{r}^{\wedge} 7$	$=32.4697$	* $r^{\wedge} 7$
A8	=	(32/105)	* pi^4	* $\mathrm{n}^{\wedge} 8$	$=29.6866$	* $\wedge^{\wedge} 8$
A9		(1/12)	* pi^5	* $\mathrm{r}^{\wedge} 9$	$=25.5016$	* $\mathrm{r}^{\wedge} 9$
A10		(64/945)	* pi^5	$\mathrm{r}^{\wedge} 10$	$=20.7251$	* $r^{\wedge} 10$
A11	=	(1/60)	* pi^6	* r^11	= 16.0232	* $r^{\wedge} 11$
A12	=	(128/10395)	* pi^6	* $\mathrm{r}^{\wedge} 12$	= 11.8382	* $r^{\wedge} 12$
A13	=	(1/360)	* pi^7	$\mathrm{r}^{\wedge} 13$	8.38970	* $r^{\wedge} 13$
A14		(256/135135)	* $\mathrm{pi}^{\wedge} 7$	$\mathrm{r}^{\wedge} 14$	5.72165	* $r^{\wedge} 14$
A15	=	(1/2520)	* pi^8	* r^15	$=3.76529$	* $r^{\wedge} 15$
A16	=	(512/2027025)	* pi^8	* $\mathrm{r}^{\wedge} 16$	$=2.39668$	* $r^{\wedge} 16$
		(1/20160)	* $\mathrm{pi}^{\wedge} 9$	$\mathrm{r}^{\wedge} 17$	$=1.47863$	* $r^{\wedge} 17$
		(1024/34459425)	* $\mathrm{pi}^{\wedge} 9$	$\mathrm{r}^{\wedge} 18$	$=0.885810$	* $\mathrm{r}^{\wedge} 18$
	=	(1/181440)	* pi^10	* $\mathrm{r}^{\wedge} 19$	$=0.516138$	* $r^{\wedge} 19$
A20		(2048/654729075)	* pi^10	* $\mathrm{r}^{\wedge} 20$	$=0.292932$	* $r^{\wedge} 20$

Equivalent (simpler?) formulas:

$$
\begin{aligned}
V_{2 k} & =\frac{\pi^{k}}{k!} r^{2 k} \\
V_{2 k+1} & =\frac{2(2 \pi)^{k}}{(2 k+1)!!} r^{2 k+1} \\
A_{2 k-1}=\frac{d V_{2 k}}{d r} & =\frac{2 \pi^{k}}{(k-1)!} r^{2 k-1} \\
A_{2 k}=\frac{d V_{2 k+1}}{d r} & =\frac{2(2 \pi)^{k}}{(2 k-1)!!} r^{2 k}
\end{aligned}
$$

where "!!" is the double factorial ${ }^{[9]}$:

$$
7!!=7 \times 5 \times 3 \times 1
$$

$$
8!!=8 \times 6 \times 4 \times 2
$$

$$
n!!=n \times(n-2) \times(n-4) \times \cdots \times\left\{\begin{array}{l}
2 \text { if } n \text { is even } \\
1 \text { if } n \text { is odd }
\end{array}\right.
$$

n-sphere caps.

An n-sphere has great ($n-1$)-spheres, cf. great circles like equator \& meridians on Earth. Colatitude $:=$ angle to North Pole, latitude $:=$ angle to equator, both along a meridian. \boldsymbol{n}-sphere cap $=$ portion of \boldsymbol{n}-sphere within a given colatitude $=$ non-Euclidean (concave/convex) n-ball with an ($n-1$)-surface area. Cf. a boiled egg's top that has been cut off. Conventionally, the edible part of the egg inside this top is part of the cap. In this very document however, I mean only the cut-off part of the egg's shell to be a cap, without its content.

Cf. surface of the 3-ball named Earth = a 2 -sphere, the (perfectly round) arctic ice cap is a 2 -sphere cap, which is a (non-Euclidean) 2-ball (i.e. disk) within a given 1-sphere (circle of latitude), the latter often identified by its colatitude or its radius measured from the North Pole as an arc length along a meridian on Earth's surface.

> In daily life, this ice cap's 2-volume \& 1-surface area are called surface area \& circumference, respectively.

A 2-sphere cap is a (non-Euclidean) 2-ball (disk) with a 1-surface (circumf.)
\& a 3-sphere cap is a (non-Euclidean) 3-ball with a 2 -surface.

In this document, I define:

$$
\begin{aligned}
& V_{n}^{\text {cap }}:=n \text {-volume of an } n \text {-sphere cap; } \\
& A_{n}^{\text {cap }}:=(n-1) \text {-surface area of an } n \text {-sphere cap. }
\end{aligned}
$$

hence: $V_{2}^{\text {cap }}$ is the 2-vol. of a 2-ball (disk) with a 1-surf. area (circumference);
$V_{3}^{\text {cap }}$ is the 3 -vol. of a (massive) 3-ball with a (hollow) 2 -surf. area.
In his introduction, S.Li defines ${ }^{[1]}$:
Let S^{n} be an n-hypersphere, or n-sphere for short, of radius r in n-dimensional Euclidean space.

This is however inconsistent with the standard definition of an n-sphere.

An \boldsymbol{n}-sphere exists in $(\boldsymbol{n}+1)$-dimensional Euclidean space.
S.Li says a $\mathbf{2}$-sphere would exist in $\mathbf{2 D} \mathrm{D}_{\text {Eucl }}$, but since a $\mathbf{2}$-sphere is the surface of a 3 -ball, it requires $3 \mathrm{D}_{\text {Eucl }}$. In $2 \mathrm{D}_{\text {Eucl }}$ exist 1 -spheres (circles).
Earth's surface is a $\mathbf{2}$-sphere whilst Earth itself is a $\mathbf{3 - b a l l}$ in $\mathbf{3 D}_{\text {Eucl }}$. King Arthur's table top is a 2 -ball in $2 \mathrm{D}_{\text {Eucl }} \&$ its edge is a 1 -sphere.
S.Li derives:

$$
\begin{aligned}
& \boldsymbol{V}_{n}^{\text {cap }}=\frac{1}{2} V_{n} \cdot I_{\sin ^{2} \varphi}\left(\frac{n+1}{2}, \frac{1}{2}\right)=\frac{1}{2} \cdot \frac{\pi^{n / 2}}{\Gamma(1+n / 2)} r^{n} \cdot I_{\sin ^{2} \varphi}\left(\frac{n+1}{2}, \frac{1}{2}\right) \\
& A_{n}^{\text {cap }}=\frac{1}{2} A_{n} \cdot I_{\sin ^{2} \varphi}\left(\frac{n-1}{2}, \frac{1}{2}\right)=\frac{\pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} \cdot I_{\sin ^{2} \varphi}\left(\frac{n-1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

But what he would call a $\mathbf{3}$-sphere actually is a $\mathbf{2}$-sphere, etc.
I rename $V_{n}^{\text {cap }}$ to $W_{n}^{\text {cap }}$, which then is the n-volume of an n-ball top, being a fraction of the n-volume of the entire n-ball, so it includes part of the n-ball's original interior (the edible part of the aforementioned egg). In this very document, I will further ignore $W_{n}^{\text {cap }}$. By renaming, the symbol $V_{n}^{\text {cap }}$ has become available for reuse and I rename $A_{n}^{\text {cap }}$ to $V_{n-1}^{\text {cap }}$, which would for example be the surface of an ice cap on Earth. It is the ($n-1$)-volume of an $(n-1)$-sphere cap, thus correcting for S.Li's error in the dimension.
Via an $(n-1) \rightarrow n$ transformation, $V_{n}^{\text {cap }}$ now is the n-volume of an n-sphere cap, which itself is a non-Euclidean n-ball with an ($n-1$)-surface.
S.Li's:

$$
A_{n}^{\mathrm{cap}}=\frac{\pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} \cdot I_{\sin ^{2} \varphi}\left(\frac{n-1}{2}, \frac{1}{2}\right)
$$

has now become: $\quad V_{n-1}^{\text {cap }}=\frac{\pi^{n / 2}}{\Gamma(n / 2)} r^{n-1} \cdot I_{\sin ^{2} \varphi}\left(\frac{n-1}{2}, \frac{1}{2}\right)$
hence:

$$
V_{n}^{\mathrm{cap}}(\varphi)=\frac{\pi^{(n+1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} r^{n} \cdot I_{\sin ^{2} \varphi}\left(\frac{n}{2}, \frac{1}{2}\right)
$$

is the n-volume of an n-sphere cap within colatitude φ, for example the surface of an ice cap or so.

We redefine $\boldsymbol{A}_{\boldsymbol{n}}^{\text {cap }}:=\frac{\boldsymbol{d} \boldsymbol{V}_{n}^{\text {cap }}}{\boldsymbol{d} r_{n}}$ as the $(n-1)$-surface area of an n-sphere cap (e.g. the circumference of an ice cap), where $r_{n}=$ radius of n-ball ($=n$-sphere cap) as measured along the n-surface of the n-spere on which the cap resides, i.e. the colatitudinal arc length (distance from North Pole along terrestrial meridian).

What the heck is $I_{\sin ^{2} \varphi}(a, b)$?

The Regularised Incomplete Beta function \& φ is the colatitude. And what is the Regularised Incomplete Beta function?

$$
\text { It is: } I_{x}(a, b)=\frac{\mathrm{B}(x ; a, b)}{\mathrm{B}(a, b)}
$$

where $\mathrm{B}(a, b)$ is the Beta function, which in this definition of $I_{x}(a, b)$ regularises the Incomplete Beta function $\mathrm{B}(x ; a, b)$.

$$
\begin{gathered}
\mathrm{B}(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \\
\text { and } \mathrm{B}(x ; a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t \\
\text { hence } \mathrm{B}(1 ; a, b)=\mathrm{B}(a, b)
\end{gathered}
$$

After substituting $\sin ^{2} \varphi$ for x, we obtain the behemoth $I_{\sin ^{2} \varphi}(a, b)$ which can spawn various equations using φ.

A script performing this spawning task for some (a, b) domain yielded (using recursion rules ${ }^{[5]} \&$ the $I_{x}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{2}{\pi} \arctan \frac{\sqrt{x}}{\sqrt{1-x}}$ value $^{[2]}$):
$I_{\sin ^{2} \varphi}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{2 \varphi}{\pi}$
$I_{\sin ^{2} \varphi}\left(\frac{2}{2}, \frac{1}{2}\right)=1-C$
$I_{\sin ^{2} \varphi}\left(\frac{3}{2}, \frac{1}{2}\right)=\frac{2 \varphi-\sin 2 \varphi}{\pi}$

$$
I_{\sin ^{2} \varphi}\left(\frac{4}{2}, \frac{1}{2}\right)=1-C\left(1+\frac{S^{2}}{2}\right)
$$

$I_{\sin ^{2} \varphi}\left(\frac{5}{2}, \frac{1}{2}\right)=\frac{2 \varphi-\sin 2 \varphi-C\left(4 S^{3} / 3\right)}{\pi} \quad I_{\sin ^{2} \varphi}\left(\frac{6}{2}, \frac{1}{2}\right)=1-C\left(1+\frac{S^{2}}{2}+\frac{3 S^{4}}{8}\right)$
$I_{\sin ^{2} \varphi}\left(\frac{7}{2}, \frac{1}{2}\right)=\frac{2 \varphi-\sin 2 \varphi-C\left(4 S^{3} / 3+16 S^{5} / 15\right)}{\pi}$

$$
I_{\sin ^{2} \varphi}\left(\frac{8}{2}, \frac{1}{2}\right)=1-C\left(1+\frac{S^{2}}{2}+\frac{3 S^{4}}{8}+\frac{5 S^{6}}{16}\right)
$$

$I_{\sin ^{2} \varphi}\left(\frac{9}{2}, \frac{1}{2}\right)=\frac{2 \varphi-\sin 2 \varphi-C\left(4 S^{3} / 3+16 S^{5} / 15+32 S^{7} / 35\right)}{\pi}$

$$
I_{\sin ^{2} \varphi}\left(\frac{10}{2}, \frac{1}{2}\right)=1-C\left(1+\frac{S^{2}}{2}+\frac{3 S^{4}}{8}+\frac{5 S^{6}}{16}+\frac{35 S^{8}}{128}\right)
$$

where: $\quad S:=\sin \varphi, \quad C:=\cos \varphi, \quad 0 \leq \varphi \leq \frac{\pi}{2}$.

Already mentioned: Gamma function; some values:

Shown above: $\quad V_{n}^{\text {cap }}(\varphi)=\frac{\pi^{(n+1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} r^{n} \cdot I_{\sin ^{2} \varphi}\left(\frac{n}{2}, \frac{1}{2}\right)$
yielding: $\quad \boldsymbol{V}_{\mathbf{1}}^{\text {cap }}(\boldsymbol{\varphi})=\frac{\pi^{(1+1) / 2}}{\Gamma\left(\frac{1+1}{2}\right)} r \cdot I_{\sin ^{2} \varphi}\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{\pi}{\Gamma(1)=(0!)=1} r \cdot \frac{2 \varphi}{\pi}$
$=\mathbf{2 \varphi r}=\quad$ arc length of circle segment where φ is from circle's NP; segment extends to both sides;

$$
\begin{aligned}
& \boldsymbol{V}_{\mathbf{2}}^{\mathbf{c a p}}(\boldsymbol{\varphi})=\frac{\pi^{(2+1) / 2}}{\Gamma\left(\frac{2+1}{2}\right)} r^{2} \cdot I_{\sin ^{2} \varphi}\left(\frac{2}{2}, \frac{1}{2}\right)=\frac{\pi \sqrt{\pi}}{\Gamma\left(\frac{3}{2}\right)} r^{2} \cdot(1-C) \\
& =\frac{\pi \sqrt{\pi}}{\sqrt{\pi} / 2} r^{2} \cdot(1-C)=\mathbf{2 \pi} \boldsymbol{r}^{\mathbf{2}}(\mathbf{1}-\boldsymbol{\operatorname { c o s } \boldsymbol { \varphi })} \\
& V_{2}^{\text {cap }}(\varphi=0)=0 \\
& V_{2}^{\text {cap }}\left(\varphi=\frac{\pi}{2}\right)=2 \pi r^{2}=\frac{4 \pi r^{2}}{2} \\
& \boldsymbol{V}_{\mathbf{3}}^{\mathbf{c a p}}(\boldsymbol{\varphi})=\frac{\pi^{(3+1) / 2}}{\Gamma\left(\frac{3+1}{2}\right)} r^{3} \cdot I_{\sin ^{2} \varphi}\left(\frac{3}{2}, \frac{1}{2}\right)=\frac{\pi^{2}}{\Gamma(2)=(1!)=1} r^{3} \cdot \frac{2 \varphi-\sin 2 \varphi}{\pi} \\
& =\boldsymbol{\pi} \boldsymbol{r}^{\mathbf{3}}(\mathbf{2} \boldsymbol{\varphi}-\sin \mathbf{2} \boldsymbol{\varphi})
\end{aligned}
$$

\boldsymbol{n}-surface ("circumference"):

$$
A_{n}^{\mathrm{cap}}=\frac{d V_{n}^{\text {cap }}}{d r_{n}}=\frac{1}{D_{\mathrm{a}}} \cdot \frac{d V_{n}^{\mathrm{cap}}(\rho)}{d \rho}
$$

$S_{3}^{\text {cap }}=$ (non-Euclidean) S_{2}, "circumference" $=2$-surface area:

$$
\begin{aligned}
& V_{3}^{\text {cap }}(\rho)=D_{\mathrm{a}}^{3} \frac{2 \pi \rho-\sin 2 \pi \rho}{\pi^{2}} \quad \therefore \quad A_{3}^{\text {cap }}(\rho)=\frac{D_{\mathrm{a}}^{2}}{\pi^{2}} \cdot \frac{d}{d \rho}(2 \pi \rho-\sin 2 \pi \rho) \\
& \text { 3-spherical: } \\
& \text { Euclidean: } \\
& 4 \pi r_{\text {cap }}^{2}=4 \pi D_{\text {al }}^{2} \rho^{2}=\frac{4 D_{\mathrm{a}}^{2}}{\pi}(\pi \rho)^{2}
\end{aligned}
$$

$S_{2}^{\text {cap }}=\left(\right.$ non-Euclidean) S_{1}, circumference (of ice cap) $=1$-surface area:

$$
\begin{array}{rlrl}
V_{2}^{\mathrm{cap}}(\rho)=D_{\mathrm{a}}^{2} \frac{2(1-\cos \pi \rho)}{\pi} \quad \therefore \quad A_{2}^{\mathrm{cap}}(\rho) & =\frac{2 D_{\mathrm{a}}}{\pi} \cdot \frac{d}{d \rho}(1-\cos \pi \rho) \\
\text { 2-spherical: } & \boldsymbol{A}_{2}^{\mathrm{cap}}(\boldsymbol{\rho}) & =\mathbf{2 D _ { \mathrm { a } }} \sin \pi \boldsymbol{\rho} \\
\text { Euclidean: } & 2 \pi r_{\mathrm{cap}}=2 \pi D_{\mathrm{a}} \rho & =2 D_{\mathrm{a}}(\pi \rho)
\end{array}
$$

References:

1. S. Li: Concise Formulas for the Area and Volume of a Hyperspherical Cap

Asian Journal of Mathematics and Statistic 4 (1): 66-70, 2011
ISSN 1994-5418 / DOI: 10.3923/ajms.2011.66.70
https://docsdrive.com/pdfs/ansinet/ajms/2011/66-70.pdf
https://scialert.net/fulltext/fulltextpdf.php?pdf=ansinet/ajms/2011/66-70.pdf
2. A Method for Computing the Incomplete Beta Function Ratio
U. S. Naval Weapons Laboratory Dahlgren, Virginia
https://apps.dtic.mil/sti/tr/pdf/AD0642495.pdf
3. https://en.wikipedia.org/wiki/Gamma function
4. https://en.wikipedia.org/wiki/Beta function
5. https://en.wikipedia.org/wiki/Beta function\#Incomplete beta function
6. https://en.wikipedia.org/wiki/Volume of an n-ball
7. https://en.wikipedia.org/wiki/N-sphere
8. https://en.wikipedia.org/wiki/Spherical cap
9. https://en.wikipedia.org/wiki/Double factorial

