p.	1/	1	7
----	----	---	---

r:	radius of a ball or sphere;
ball:	collection of all points having a distance d
	to some reference point we call its centre,
	where $d \leq r$; it is massive , inside is part of it ;
sphere:	collection of all points having a distance d
	to some reference point we call its centre,
	where $d = r$; it is hollow , inside is <u>not</u> part of it ;
volume:	size of what is enclosed by a sphere;
surface area:	size of what encloses a ball;
	a sphere is the outer surface of a ball,
	a ball is a sphere plus all it encloses;
circle:	equivalent of a sphere in 2D space;
disk:	equivalent of a ball in 2D space,
	i.e. a circle plus all it encloses.
	A ball is massive , a sphere is hollow .

Single Dutch:

In *dit* document is een "3-ball" een massieve bal en een "2-sphere" een holle bol, Gijs! Ezelsbruggetje (donkey bridgie?): de *a* van *bal* komt van *massief* of *alles*; de **o** van **bo** staat voor **o**ppervlak; ook rijmt bol op hol en da's nie vol. Lol.

In daily life, a *surface area* is **2D** and a *volume* is **3D**. In *multidimensional mathematics*, that's another cook different:

		cf. a desktop (no, not a computer screen, moron!)	cf. the space all around us	beyond our imagination		
	math. name:	2-ball	3-ball	4-ball		
	conv. name:	disk	ball	hyperball		
	math. size:	2-volume	3-volume	4-volume		
enclosed:	conv. size:	<i>surface</i> <i>area</i> [m ²]	volume [m ³]	hyper- volume [m ⁴]		
		$V_2 = \pi r^2$	$V_3 = \frac{4\pi}{3}r^3$	$V_4 = \frac{\pi^2}{2}r^4$		
	math. name:	1-sphere	2-sphere	3-sphere		
	conv. name:	circle	sphere	hypersphere		
	math. size:	1-surface area	2-surface area	3-surface area		
enclosing:	conv. size:	<i>circum-</i> <i>ference</i> [m]	<i>surface</i> <i>area</i> [m ²]	volume [m ³]		
	$A_n = \frac{dV_{n+1}}{dr}$	$A_1 = 2\pi r$	$A_2 = 4\pi r^2$	$A_3 = 2\pi^2 r^3$		

conv. descr.	$V_n = \frac{rA_{n-1}}{n} = \frac{2\pi r^2 V_{n-2}}{n}$	$A_n = 2\pi r V_{n-1} = \frac{dV_{n+1}}{dr}$	conv. descr.
	$V_0 \coloneqq 1$	$A_0 \coloneqq 2$	
	$V_1 = \frac{rA_0}{1} = 2r$	$A_1 = 2\pi r V_0 = 2\pi r$	<i>circumf. of circle</i>
area of circle	$V_2 = \frac{rA_1}{2} = \pi r^2$	$A_2 = 2\pi r V_1 = 4\pi r^2$	area of sphere
volume of sphere	$V_3 = \frac{rA_2}{3} = \frac{4\pi}{3}r^3$	$A_3 = 2\pi r V_2 = 2\pi^2 r^3$	
	$V_4 = \frac{rA_3}{4} = \frac{\pi^2}{2}r^4$	$A_4 = 2\pi r V_3 = \frac{8\pi^2}{3} r^4$	
	$V_5 = \frac{rA_4}{5} = \frac{8\pi^2}{15}r^5$	$A_{5} = 2\pi r V_{4} = \pi^{3} r^{5}$	
	$V_6 = \frac{rA_5}{6} = \frac{\pi^3}{6}r^6$	etc.	

 V_n is enclosed by S_{n-1} , S_n encloses V_{n+1} (S_n denotes the (hollow) *n*-sphere as such, A_n is the value of its surface area). On the internet they often use S_n or A_n to indicate the surface of an *n*-ball where they should actually have used S_{n-1} or A_{n-1} , which is rather cofunsign.

The earth is a 3-ball & its surface is a 2-sphere with 2 dim., i.e. lat. & lon.

p.4/17

		<i>n</i> -volume	C	of <i>n</i> -	·b	all [[]	6,	^{7]} and <i>1</i>	1 -	sur	fac	e	а	rea of <i>n</i> -sp	h	nere	[6]	^{,7]} f	OI	$n n \leq 2$	20	
	$V_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} r^n \qquad A_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)} r^{n-1} \text{, i.e. } A_n = \frac{2\pi^{(n+1)/2}}{\Gamma(\frac{n+1}{2})} r^n$ where $\Gamma(x)$ is the so called gamma function ^[3] : $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ $\Gamma(x+1) = x\Gamma(x) \qquad \forall (n \in \mathbb{N}, n > 0): \Gamma(n) = (n-1)!$																					
Vol	ume	of n-ball									<u>S</u>	ur	fac	<u>ce area of n-sphe</u>	re							
V0	=	1					=	1.00000			A	0	=	2					=	2.00000		
V1	=	2			*	r		2.00000	*	r	A	1	=	2	*	pi	*	r	=	6.28319	*	r
V2	=			pi	*	r^2	=	3.14159	*	r^2	A	2	=	4	*	pi	*	r^2	=	12.5664	*	r^2
V3	=	(4/3)	*	pi	*	r^3	=	4.18879	*	r^3	A	3	=	2	*	p1^2	*	r^3	=	19.7392	*	r^3
V4	=	(1/2)	*	p1^2	*	r^4	=	4.93480	*	r^4	А	4	=	(8/3)	*	pi^2	*	r^4	=	26.3189	*	r^4
V5	=	(8/15)	*	pi^2	*	r^5	=	5.26379	*	r^5	A	.5	=	/ <i>/ .</i>		pi^3	*	r^5	=	31.0063	*	r^5
V6	=	(1/6)	*	pi^3	*	r^6	=	5.16771	*	r^6	А	6	=	(16/15)	*	pi^3	*	r^6	=	33.0734	*	r^6
V7	=	(16/105)	*	pi^3	*	r^7	=	4.72477	*	r^7	A	7	=	(1/3)	*	pi^4	*	r^7	=	32.4697	*	r^7
V8	=	(1/24)	*	pi^4	*	r^8	=	4.05871	*	r^8	A	8	=	(32/105)	*	pi^4	*	r^8	=	29.6866	*	r^8
V9	=	(32/945)	*	pi^4	*	r^9	=	3.29851	*	r^9	A	9	=	(1/12)	*	pi^5	*	r^9	=	25.5016	*	r^9
V10	=	(1/120)	*	pi^5	*	r^10	=	2.55016	*	r^10	A	10	=	(64/945)	*	pi^5	*	r^10	=	20.7251	*	r^10
V11	=	(64/10395)	*	pi^5	*	r^11	=	1.88410	*	r^11	A	11	=	(1/60)	*	pi^6	*	r^11	=	16.0232	*	r^11
V12	=	(1/720)	*	pi^6	*	r^12	=	1.33526	*	r^12	A	12	=	(128/10395)	*	pi^6	*	r^12	=	11.8382	*	r^12
V13	=	(128/135135)	*	pi^6	*	r^13	=	0.910629	*	r^13	A	13	=	(1/360)	*	pi^7	*	r^13	=	8.38970	*	r^13
V14	=	(1/5040)	*	pi^7	*	r^14	=	0.599265	*	r^14	A	14	=	(256/135135)	*	pi^7	*	r^14	=	5.72165	*	r^14
V15	=	(256/2027025)	*	pi^7	*	r^15	=	0.381443	*	r^15	A	15	=	(1/2520)	*	pi^8	*	r^15	=	3.76529	*	r^15
V16	=	(1/40320)	*	pi^8	*	r^16	=	0.235331	*	r^16	A	16	=	(512/2027025)	*	pi^8	*	r^16	=	2.39668	*	r^16
V17	=	(512/34459425)	*	pi^8	*	r^17	=	0.140981	*	r^17	А	17	=	(1/20160)	*	pi^9	*	r^17	=	1.47863	*	r^17
V18	=	(1/362880)	*	pi^9	*	r^18	=	8.21459e-2	*	r^18	А	18	=	(1024/34459425)	*	pi^9	*	r^18	=	0.885810	*	r^18
V19	=	(1024/654729075)	*	pi^9	*	r^19	=	4.66216e-2	*	r^19	А	19	=	(1/181440)	*	pi^10	*	r^19	=	0.516138	*	r^19
V20	=	(1/3628800)	*	pi^10	*	r^20	=	2.58069e-2	*	r^20	А	20	=	(2048/654729075)	*	pi^10	*	r^20	=	0.292932	*	r^20

Equivalent (simpler?) formulas: $= \frac{\pi^{k}}{k!} r^{2k}$ $= \frac{2(2\pi)^{k}}{(2k+1)!!} r^{2k+1}$ V_{2k} V_{2k+1} $A_{2k-1} = \frac{dV_{2k}}{dr} = \frac{2\pi^k}{(k-1)!} r^{2k-1}$ $A_{2k} = \frac{dV_{2k+1}}{dr} = \frac{2(2\pi)^k}{(2k-1)!!} r^{2k}$ where "!!" is the *double factorial*^[9]: $7!! = 7 \times 5 \times 3 \times 1$ $8!! = 8 \times 6 \times 4 \times 2$ $n!! = n \times (n-2) \times (n-4) \times \dots \times \begin{cases} 2 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$

p.7/17

n-sphere caps.

An *n*-sphere has great (n - 1)-spheres, cf. great circles like equator & meridians on Earth. Colatitude := angle to North Pole, latitude := angle to equator, both along a meridian.

n-sphere cap = portion of *n*-sphere within a given colatitude

= non-Euclidean (concave/convex) n-ball with an (n - 1)-surface area.

Cf. a boiled egg's top that has been cut off. Conventionally, the edible part of the egg inside this top is part of the cap. In this very document however, I mean only the cut-off part of the egg's shell to be a cap, without its content.

Cf. surface of the 3-ball named Earth = a 2-sphere, the (perfectly round) arctic ice cap is a 2-sphere cap, which is a (non-Euclidean) 2-ball (i.e. disk) within a given 1-sphere (circle of latitude), the latter often identified by its colatitude or its radius measured from the North Pole as an arc length along a meridian on Earth's surface.

In daily life, this ice cap's **2**-volume & **1**-surface area area called *surface area* & *circumference*, respectively.

A 2-sphere cap is a (non-Euclidean) 2-ball (disk) with a 1-surface (circumf.) & a 3-sphere cap is a (non-Euclidean) 3-ball with a 2-surface.

In this document, I define:

 $V_n^{cap} \coloneqq n$ -volume of an *n*-sphere cap; $A_n^{\operatorname{cap}} \coloneqq (n-1)$ -surface area of an *n*-sphere cap.

hence: V_2^{cap} is the 2-vol. of a 2-ball (disk) with a 1-surf. area (circumference); V_2^{cap} is the 3-vol. of a (massive) 3-ball with a (hollow) 2-surf. area.

> In his *introduction*, **S.Li** defines^[1]: Let S^n be an *n*-hypersphere, or *n*-sphere for short, of radius r in n-dimensional Euclidean space.

This is however inconsistent with the standard definition of an *n*-sphere.

An *n*-sphere exists in (n + 1)-dimensional Euclidean space.

S.Li says a **2**-sphere would exist in $2D_{Fucl}$, but since a **2**-sphere is the surface of a **3**-ball, it requires $\mathbf{3}D_{Eucl}$. In $\mathbf{2}D_{Eucl}$ exist **1**-spheres (circles).

Earth's surface is a 2-sphere whilst Earth itself is a 3-ball in $3D_{Eucl}$. King Arthur's table top is a 2-ball in 2D_{Eucl} & its edge is a 1-sphere.

S.Li derives:

$$V_{n}^{cap} = \frac{1}{2} V_{n} \cdot I_{\sin^{2} \varphi} \left(\frac{n+1}{2}, \frac{1}{2} \right) = \frac{1}{2} \cdot \frac{\pi^{n/2}}{\Gamma(1+n/2)} r^{n} \cdot I_{\sin^{2} \varphi} \left(\frac{n+1}{2}, \frac{1}{2} \right)$$
$$A_{n}^{cap} = \frac{1}{2} A_{n} \cdot I_{\sin^{2} \varphi} \left(\frac{n-1}{2}, \frac{1}{2} \right) = \frac{\pi^{n/2}}{\Gamma(n/2)} r^{n-1} \cdot I_{\sin^{2} \varphi} \left(\frac{n-1}{2}, \frac{1}{2} \right)$$

But what he would call a **3**-sphere actually is a **2**-sphere, etc.

I rename V_n^{cap} to W_n^{cap} , which then is the *n*-volume of an *n*-ball top, being a fraction of the *n*-volume of the entire *n*-ball, so it includes part of the *n*-ball's original interior (the edible part of the aforementioned egg). In this very document, I will further ignore W_n^{cap} . By renaming, the symbol V_n^{cap} has become available for reuse and I rename A_n^{cap} to V_{n-1}^{cap} , which would for example be the surface of an ice cap on Earth. It is the (n-1)-volume of an (n-1)-sphere cap, thus correcting for S.Li's error in the dimension.

Via an $(n-1) \rightarrow n$ transformation, V_n^{cap} now is the *n*-volume of an *n*-sphere cap, which itself is a non-Euclidean *n*-ball with an (n-1)-surface.

p.9/17

S.Li's:

$$A_{n}^{cap} = \frac{\pi^{n/2}}{\Gamma(n/2)} r^{n-1} \cdot I_{\sin^{2}\varphi} \left(\frac{n-1}{2}, \frac{1}{2}\right)$$
has now become:

$$V_{n-1}^{cap} = \frac{\pi^{n/2}}{\Gamma(n/2)} r^{n-1} \cdot I_{\sin^{2}\varphi} \left(\frac{n-1}{2}, \frac{1}{2}\right)$$
hence:

$$V_{n}^{cap}(\varphi) = \frac{\pi^{(n+1)/2}}{\Gamma\left(\frac{n+1}{2}\right)} r^{n} \cdot I_{\sin^{2}\varphi} \left(\frac{n}{2}, \frac{1}{2}\right)$$

is the *n*-volume of an *n*-sphere cap within colatitude φ , for example the surface of an ice cap or so.

We redefine $A_n^{cap} \coloneqq \frac{dV_n^{cap}}{dr_n}$ as the (n-1)-surface area of an *n*-sphere cap (e.g. the circumference of an ice cap), where r_n = radius of *n*-ball (= *n*-sphere cap) as measured along the *n*-surface of the *n*-spere on which the cap resides, i.e. the colatitudinal arc length (distance from North Pole along terrestrial meridian).

What the heck is $I_{\sin^2 \varphi}(a, b)$?

The *Regularised Incomplete Beta function* & φ is the *colatitude*. And what is the *Regularised Incomplete Beta function*?

It is:
$$I_{\chi}(a,b) = \frac{B(x;a,b)}{B(a,b)}$$

where B(a, b) is the *Beta function*, which in this definition of $I_x(a, b)$ regularises the *Incomplete Beta function* B(x; a, b).

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

and B(x; a, b) =
$$\int_0^x t^{a-1} (1-t)^{b-1} dt$$

hence B(1; a, b) = B(a, b)

After substituting $\sin^2 \varphi$ for x, we obtain the behemoth $I_{\sin^2 \varphi}(a, b)$ which can spawn various equations using φ .

A script performing this spawni	ng task for some (a, b) domain yielded
(using recursion rules ^[5] &	the $I_x\left(\frac{1}{2},\frac{1}{2}\right) = \frac{2}{\pi} \arctan \frac{\sqrt{x}}{\sqrt{1-x}}$ value ^[2]):
$I_{\sin^2\varphi}\left(\frac{1}{2},\frac{1}{2}\right) = \frac{2\varphi}{\pi}$	$I_{\sin^2\varphi}\left(\frac{2}{2},\frac{1}{2}\right) = 1 - C$
$I_{\sin^2\varphi}\left(\frac{3}{2},\frac{1}{2}\right) = \frac{2\varphi - \sin 2\varphi}{\pi}$	$I_{\sin^2\varphi}\left(\frac{4}{2},\frac{1}{2}\right) = 1 - C\left(1 + \frac{S^2}{2}\right)$
$I_{\sin^2\varphi}\left(\frac{5}{2},\frac{1}{2}\right) = \frac{2\varphi - \sin 2\varphi - C(4S^3/3)}{\pi}$	$I_{\sin^2\varphi}\left(\frac{6}{2},\frac{1}{2}\right) = 1 - C\left(1 + \frac{S^2}{2} + \frac{3S^4}{8}\right)$
$I_{\sin^2\varphi}\left(\frac{7}{2},\frac{1}{2}\right) = \frac{2\varphi - \sin 2\varphi - C(4S^3/3 + 16S^5/15)}{\pi}$	$\frac{5}{I_{\sin^2\varphi}\left(\frac{8}{2},\frac{1}{2}\right)} = 1 - C\left(1 + \frac{S^2}{2} + \frac{3S^4}{8} + \frac{5S^6}{16}\right)$
$I_{\sin^2\varphi}\left(\frac{9}{2},\frac{1}{2}\right) = \frac{2\varphi - \sin 2\varphi - C(4S^3/3 + 16S^5/19)}{\pi}$	$\frac{5+32S^{7}/35}{I_{\sin^{2}\varphi}\left(\frac{10}{2},\frac{1}{2}\right)} = 1 - C\left(1 + \frac{S^{2}}{2} + \frac{3S^{4}}{8} + \frac{5S^{6}}{16} + \frac{35S^{8}}{128}\right)$
where: $S \coloneqq \sin \varphi$, $C \coloneqq \cos \varphi$, $0 \le \varphi \le \frac{\pi}{2}$.

Already mentioned: *Gamma function*; some values:

$\Gamma\left(\frac{1}{2}\right) =$	$\sqrt{\pi}$	≈	1.772 453 850 905 5158;	$\Gamma(1) = 0! =$	1;
$\Gamma\left(\frac{3}{2}\right) =$	$\sqrt{\pi}/2$	≈	0.886 226 925 452 7579;	$\Gamma(2) = 1! =$	1;
$\Gamma\left(\frac{5}{2}\right) =$	$3\sqrt{\pi}/4$	≈	1.329 340 388 179 137;	$\Gamma(3) = 2! =$	2;
$\Gamma\left(\frac{7}{2}\right) =$	$15\sqrt{\pi}/8$	≈	3.323 350 970 447 842;	$\Gamma(4) = 3! =$	6;
$\Gamma\left(\frac{9}{2}\right) =$	$105\sqrt{\pi}/16$	≈	11.631 728 396 567 448;	$\Gamma(5) = 4! =$	24;
$\Gamma\left(\frac{11}{2}\right) =$	945 $\sqrt{\pi}/32$	≈	52.342 777 784 553 52;	$\Gamma(6) = 5! =$	120;
$\Gamma\left(\frac{13}{2}\right) =$	$10\ 395\ \sqrt{\pi}/64$	≈	287.885 277 815 044 33;	$\Gamma(7) = 6! =$	720;
$\Gamma\left(\frac{15}{2}\right) =$	$135\ 135\ \sqrt{\pi}/128$	≈	1 871.254 305 797 7882;	$\Gamma(8) = 7! =$	5 040;
$\Gamma\left(\frac{17}{2}\right) =$	$2\ 027\ 025\ \sqrt{\pi}/256$	≈	14 034.407 293 483 411;	$\Gamma(9) = 8! =$	40 320;
$\Gamma\left(\frac{19}{2}\right) =$	34 459 425 $\sqrt{\pi}/512$	≈	119 292.461 994 609;	$\Gamma(10) = 9! =$	362 880;
$\Gamma\left(\frac{2k+1}{2}\right)$	$\frac{1}{2} = k + \frac{1}{2} = \frac{(2k)}{2}$	$\frac{k}{2^k}$	$\frac{2}{2}$ $\sqrt{\pi}$	$\Gamma(n) = (n$	- 1)!

Shown above: $V_n^{\operatorname{cap}}(\varphi) = \frac{\pi^{(n+1)/2}}{\Gamma(\frac{n+1}{2})} r^n \cdot I_{\sin^2 \varphi} \left(\frac{n}{2}, \frac{1}{2}\right)$ yielding: $V_1^{\operatorname{cap}}(\varphi) = \frac{\pi^{(1+1)/2}}{\Gamma(\frac{1+1}{2})} r \cdot I_{\sin^2 \varphi} \left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\pi}{\Gamma(1) = (0!) = 1} r \cdot \frac{2\varphi}{\pi}$ $= 2\varphi r =$ arc length of circle segment where φ is from circle's NP; segment extends to both sides; $V_2^{\operatorname{cap}}(\varphi) = \frac{\pi^{(2+1)/2}}{\Gamma(\frac{2+1}{2})} r^2 \cdot I_{\sin^2 \varphi} \left(\frac{2}{2}, \frac{1}{2}\right) = \frac{\pi\sqrt{\pi}}{\Gamma(\frac{3}{2})} r^2 \cdot (1 - C)$

$$=\frac{\pi\sqrt{\pi}}{\sqrt{\pi}/2}r^{2}\cdot(1-C)=2\pi r^{2}(1-\cos\varphi)$$

 $V_2^{\text{cap}}(\varphi = 0) = 0$ seems rather obvious; $V_2^{\text{cap}}\left(\varphi = \frac{\pi}{2}\right) = 2\pi r^2 = \frac{4\pi r^2}{2}$ area of a hemisphere;

$$V_3^{\operatorname{cap}}(\varphi) = \frac{\pi^{(3+1)/2}}{\Gamma(\frac{3+1}{2})} r^3 \cdot I_{\sin^2 \varphi} \left(\frac{3}{2}, \frac{1}{2}\right) = \frac{\pi^2}{\Gamma(2) = (1!) = 1} r^3 \cdot \frac{2\varphi - \sin 2\varphi}{\pi}$$
$$= \pi r^3 (2\varphi - \sin 2\varphi)$$

With:	$\boldsymbol{\rho} \coloneqq \frac{\Delta \boldsymbol{\varphi}}{\boldsymbol{\varphi}_{\text{antipodal}} = \boldsymbol{\pi}}$	dimensionless distance;
we find:	$ \rho_{\rm cap} = \frac{\varphi_{\rm cap}}{\pi} = \frac{\varphi}{\pi} $	which we'll simply call $ ho$ from now on;
hence:	$\varphi = \pi \rho$	
Also:	$\boldsymbol{D}_{\mathbf{a}} \coloneqq D_{\mathrm{antipodal}} = \boldsymbol{\pi} \boldsymbol{r}$	(r = (hyper) radius of n-sphere);
ergo:	$r = \frac{D_{a}}{\pi} \div r^{m} = \frac{D_{a}^{m}}{\pi^{m}}$	
so:	$V_3^{\rm cap}(\varphi) = \pi r^3 (2\varphi - \sin 2\varphi) = \pi \frac{1}{2}$	$\frac{D_a^3}{\pi^3}(2\pi\rho-\sin 2\pi\rho)$
yielding:	$\frac{V_3^{\rm cap}(\rho)}{D_a^3} = \frac{2\pi\rho - \sin 2\pi\rho}{\pi^2}$	which is dimensionless;
and:	$V_3^{\rm cap}(\rho=1) = \frac{2D_a^3}{\pi} = 2\pi^2 r^3 = A_3($	(r) 3-area of entire 3-sphere;
Also:	$V_2^{\rm cap}(\varphi) = 2\pi r^2 (1 - \cos \varphi) = 2\pi \frac{1}{2}$	$\frac{D_a^2}{\pi^2}(1-\cos\pi\rho)$
hence:	$\frac{V_2^{\operatorname{cap}}(\rho)}{D_a^2} = \frac{2(1-\cos\pi\rho)}{\pi}$	also dimensionless;
and:	$V_2^{\rm cap}(\rho=1) = \frac{4D_{\rm a}^2}{\pi} = 4\pi r^2 = A_2(r)$	•) 2 -area of entire 2-sphere;

$$n\text{-surface ("circumference"):}$$

$$A_n^{cap} = \frac{dV_n^{cap}}{dr_n} = \frac{1}{D_a} \cdot \frac{dV_n^{cap}(\rho)}{d\rho}$$

$$S_3^{cap} = (\text{non-Euclidean}) S_2, \text{ "circumference"} = 2\text{-surface area:}$$

$$V_3^{cap}(\rho) = D_a^3 \frac{2\pi\rho - \sin 2\pi\rho}{\pi^2} \quad \therefore \quad A_3^{cap}(\rho) = \frac{D_a^2}{\pi^2} \cdot \frac{d}{d\rho} (2\pi\rho - \sin 2\pi\rho)$$

$$3\text{-spherical:} \qquad A_3^{cap}(\rho) = \frac{4D_a^2}{\pi} \sin^2 \pi\rho$$
Euclidean:
$$4\pi r_{cap}^2 = 4\pi D_a^2 \rho^2 = \frac{4D_a^2}{\pi} (\pi\rho)^2$$

 $S_2^{cap} = (\text{non-Euclidean}) S_1, \text{ circumference (of ice cap)} = 1 \text{-surface area:}$ $V_2^{cap}(\rho) = D_a^2 \frac{2(1 - \cos \pi \rho)}{\pi} \quad \therefore \quad A_2^{cap}(\rho) = \frac{2D_a}{\pi} \cdot \frac{d}{d\rho} (1 - \cos \pi \rho)$ 2-spherical: $A_2^{cap}(\rho) = 2D_a \sin \pi \rho$ Euclidean: $2\pi r_{cap} = 2\pi D_a \rho = 2D_a (\pi \rho)$

References:

- S. Li: Concise Formulas for the Area and Volume of a Hyperspherical Cap Asian Journal of Mathematics and Statistic 4 (1): 66-70, 2011 ISSN 1994-5418 / DOI: 10.3923/ajms.2011.66.70 <u>https://docsdrive.com/pdfs/ansinet/ajms/2011/66-70.pdf</u> <u>https://scialert.net/fulltext/fulltextpdf.php?pdf=ansinet/ajms/2011/66-70.pdf</u>
- A Method for Computing the Incomplete Beta Function Ratio
 U. S. Naval Weapons Laboratory Dahlgren, Virginia
 <u>https://apps.dtic.mil/sti/tr/pdf/AD0642495.pdf</u>
- 3. <u>https://en.wikipedia.org/wiki/Gamma_function</u>
- 4. <u>https://en.wikipedia.org/wiki/Beta_function</u>
- 5. <u>https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function</u>
- 6. <u>https://en.wikipedia.org/wiki/Volume of an n-ball</u>
- 7. https://en.wikipedia.org/wiki/N-sphere
- 8. <u>https://en.wikipedia.org/wiki/Spherical_cap</u>
- 9. <u>https://en.wikipedia.org/wiki/Double_factorial</u>