Isaac Newton (1686|1714, Principia):

$$
F_{g}=G M m / r^{2}
$$

Rationem vero harum gravitatis proprietatum ex phænomenis nondum potui deducere $\&$ hypothefes non fingo.
But the reason for these properties of gravitation have I not yet been able to deduce from phenomena \& I do not fabricate assumptions. He says: I don't know HOW \& WHY masses exert a force on each other.
Iohann \& Daniel Bernoulli (1712|38|47) \& Joseph-Louis Lagrange (1779|82):

$$
F_{g}=m \nabla V, V=-G M / r
$$

Gravitational field in form of a gravitational potential everywhere in space around a mass and the force per mass equals its gradient.

But HOW \& WHY does a mass produce this field?
Albert Einstein (1915):

$$
G_{\mu \nu}=\kappa T_{\mu \nu}, \kappa=8 \pi G / c^{4}
$$

Gravitation is curvature of spacetime.

But HOW \& WHY does a mass curve spacetime?

NONE of the above EXPLAINS gravitation, they merely describe it.

