In classical (Newtonian) mechanics, energy and momentum are conserved quantities. In relativistic (Einsteinian) mechanics, only their combination is conserved as the absolute value of a 4-vector named four-momentum. Below, a tilde (" \sim ") is used to denote the latter or its components.

	$ec{v} \coloneqq \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$	
	$v^2 \coloneqq v_x^2 + v_y^2 + v_z^2$	
Lorentz factor:	$\gamma^2 \coloneqq \frac{1}{1 - \frac{v^2}{c^2}} = \frac{c^2}{c^2 - v^2}$	
relativistic energy ($m = \text{rest mass}$):	$\tilde{E} \coloneqq \gamma m c^2$	
four-velocity:	$\vec{\tilde{v}} \coloneqq \begin{bmatrix} ic \\ v_x \\ v_y \\ v_y \\ v_z \end{bmatrix}$	
relativistic four-velocity:	$\vec{\tilde{u}} \coloneqq \begin{bmatrix} i\gamma c\\ \tilde{u}_x\\ \tilde{u}_y\\ \tilde{u}_z \end{bmatrix} \coloneqq \gamma \vec{\tilde{v}} = \begin{bmatrix} i\gamma c\\ \gamma v_x\\ \gamma v_y\\ \gamma v_y\\ \gamma v_z \end{bmatrix}$	
rel. four-momentum: $ec{ extsf{ ilde{p}}}\coloneqq$	$m\vec{\tilde{u}} = \begin{bmatrix} i\gamma mc\\ \tilde{p}_x\\ \tilde{p}_y\\ \tilde{p}_z \end{bmatrix} = \begin{bmatrix} i\tilde{E}/c\\ m\tilde{u}_x\\ m\tilde{u}_y\\ m\tilde{u}_z \end{bmatrix} = \begin{bmatrix} i\tilde{E}/c\\ \gamma mv_x\\ \gamma mv_y\\ \gamma mv_z \end{bmatrix}$	
rel. three-momentum squared: $ ilde{p}^2\coloneqq ilde{p}_x^2+ ilde{p}_y^2+ ilde{p}_z^2=(\gamma mv)^2$		
we find:	$\left. \vec{\widetilde{p}} \right ^2 = \left(\frac{i\widetilde{E}}{c} \right)^2 + \widetilde{p}^2 = - \left(\frac{\widetilde{E}}{c} \right)^2 + \widetilde{p}^2$	
i.e.:	$-\left ec{oldsymbol{p}} ight ^2=\left(rac{\widetilde{E}}{c} ight)^2-\widetilde{p}^2$	
as well as:	$\vec{\tilde{p}}\big ^2 = i^2 \gamma^2 m^2 c^2 + \tilde{p}_x^2 + \tilde{p}_y^2 + \tilde{p}_z^2$	
$= \tilde{p}_x^2 + \tilde{p}_y^2 + \tilde{p}_z^2 - \gamma^2 m^2 c^2$		
$= \gamma^2 m^2 \left(v_x^2 + v_y^2 + v_z^2 - c^2 \right)$ $= \gamma^2 m^2 \left(v^2 - c^2 \right) = \frac{c^2}{c^2 - v^2} m^2 \left(v^2 - c^2 \right) = -m^2 c^2$		
therefore:	$-\left \vec{\widetilde{p}}\right ^2 = m^2 c^2 = \left(\widetilde{E}/c\right)^2 - \widetilde{p}^2$	
which is a frame-independent conserved quantity that prevails over		
conservation of energy and momentum as separate quantities. It obviously & simply is conservation of mass (quantitas materiæ).		
A fact that matters to matter, as a factual matter of fact.		

It renders something like what was found by Pythagoras:

$$\tilde{E}^2 = (mc^2)^2 + (c\tilde{p})^2$$

The absolute value of momentum appears to be perpendicular to mass, & energy is their hypotenuse!

We found:	$\tilde{E}^2 = (mc^2)^2 + (c\tilde{p})^2$	
i.e.:	$\gamma^2 m^2 c^4 = m^2 c^4 + c^2 \gamma^2 m^2 v^2$	
divide by m^2c^4 :	$\gamma^2 = 1 + \frac{\gamma^2 v^2}{c^2} = 1 + \gamma^2 \beta^2$	
hence:	$\gamma^2 - 1 = \gamma^2 \beta^2$	
yielding:	$\beta^2 = \frac{\gamma^2 - 1}{\gamma^2} = 1 - \frac{1}{\gamma^2}$	follows from conservation of mass!
The same can also be deduced from	$\qquad \qquad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$	kinematically/geometrically using $c = constant$
square & multiply:	$\gamma^2(1-\beta^2)=1$	
distribute γ^2 :	$\gamma^2 - \gamma^2 \beta^2 = 1$	
yielding:	$\gamma^2 - 1 = \gamma^2 \beta^2$	
which renders:	$\beta^2 = \frac{\gamma^2 - 1}{\gamma^2} = 1 - \frac{1}{\gamma^2}$	
Kinetic energy: $E_{\rm k} = \tilde{E} - mc^2 = \sqrt{(mc^2)^2 + (c\tilde{p})^2} - mc^2$		
so: $\frac{E_{\rm k}}{mc^2} = \sqrt{1 + \frac{(c\tilde{p})^2}{(mc^2)^2}} - 1 = \sqrt{1 + \left(\frac{\tilde{p}}{mc}\right)^2} - 1 = \sqrt{1 + \left(\frac{\gamma mv}{mc}\right)^2} - 1 = \sqrt{1 + \gamma^2 \beta^2} - 1$		

i.e.:

 $\boldsymbol{\mathcal{E}}_{\mathbf{k}} \coloneqq \frac{\boldsymbol{\mathcal{E}}_{\mathbf{k}}}{\boldsymbol{\mathcal{m}}\boldsymbol{\mathcal{C}}^{2}} = \sqrt{1 + \frac{\beta^{2}}{1 - \beta^{2}}} - 1 = \sqrt{\frac{1}{1 - \beta^{2}}} - 1 = \boldsymbol{\gamma} - \boldsymbol{1}$

Have you ever realised that energy is a fully abstract quantity that cannot be directly observed as such? Strictly spoken, it is not a *physical* quantity (Greek $\varphi \upsilon \sigma \iota \varsigma = form$, shape, that which is natural, creature, $\varphi \upsilon \sigma \iota \kappa \alpha =$ of course, naturally). Mathematically perfect, but if you are hit by some flying object (which is a natural thing), you actually **feel** a force $F = \dot{p}$, not the energy itself. Please also consider momentum. If this object has a greater velocity or is more massif, you *feel* a greater force, not the momentum itself, nor its change, called impulse. As shown above, conservation of four-momentum actually is conservation of mass (quantitas materiæ, amount of stuff). I consider mass a truly fundamental natural quantity. Matter can be touched, felt, experienced. It's what we call something existing. Wouldn't it be more realistic (in a physical sense) if we'd always calculate with $m = E/c^2$ instead of $E = mc^2$?